Eastfield Mathematics Expectations

	TARGETS	SEEN	SECURE
	Number - Place Value		
1	I can count forwards and backwards in steps of powers of 10 for any given number up to 1,000,000.		
2	I can read, write, order and compare numbers to at least 1,000,000.		
3	I can determine the value of each digit in numbers up to 1,000,000.		
4	I can round any number up to 1,000,000 to the nearest 10, 100, 1000, 10000 and 100000.		
5	I can count forwards and backwards with positive and negative numbers, including through zero.		
6	I can interpret negative numbers in context (temperature and co-ordinate grids).		
7	I can solve number problems and practical problems with the above.		
8	I can read Roman numerals to 1,000 (M) and recognise years written in Roman Numerals.		
1	I have a concept of numbers well beyond 1,000,000 and their relative association to distances to planets; historical data and geographical aspects.		
2	I can link working across zero for positive and negative numbers, e.g. to calculate time intervals.		
	Number - Addition and Subtraction		
9	I can add and subtract numbers mentally with increasingly large numbers (12,462-2300 = 10,162).		
10	I can add and subtract whole numbers with more than 4 digits, including using formal written methods.		
11	I can use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.		
12	I can solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.		
3	I can use rounding as a strategy for quickly assessing what approximate answers ought to be before calculating.		
	Number - Multiplication and Division		
13	I can identify multiples and factors, including finding all factor pairs of a number and common factors of two numbers.		
14	I use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.		
15	I can establish whether a number up to 100 is prime and recall prime numbers up to 19.		
16	I recognise and use square numbers and cube numbers, and the notation for squared and cubed.		
17	I can multiply and divide numbers mentally drawing on known facts.		
18	I can multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.		
19	I can multiply numbers up to 4 digits by a 1- or two-digit number using a formal written method, including long multiplication for two-digit numbers.		
20	I can divide numbers up to 4 digits by a 1-digit number using the formal written method of short division and interpret remainders appropriately for the context.		
21	I can solve problems involving multiplication and division including using knowledge of factors and multiples, squares and cubes.		
22	I can solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign.		
23	I can solve problems involving multiplication and division including scaling by simple fractions and problems involving simple rates.		
4	I can identify and explain links between multiplication facts beyond the 12 times table. For example, $25 \times 48=$ \qquad , $100 \times 48=4800$, \qquad $\times 48=4848$.		
	Number - Fractions (including decimals and percentages)		
24	I can recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number [for example, $2 / 5+4 / 5=6 / 5=11 / 5$]		
25	I can identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.		
26	I can compare and order fractions whose denominators are multiples of the same number.		
27	I can add and subtract fractions with the same denominator and denominators that are multiples of the same number.		

Eastfield Mathematics Expectations

28	I can multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.		
29	I can read and write decimal numbers as fractions.		
30	I recognise and can use thousandths and relate them to tenths, hundredths and decimal equivalents.		
31	I can round decimals with 2 decimal places to the nearest whole number and 1 decimal place.		
32	I can read, write, order, compare and solve problems involving numbers with up to 3 decimal places.		
33	I recognise the percent symbol (\%) and understand that percent relates to 'number parts per hundred'.		
34	I can write percentages as a fraction (with a denominator of 100) and as a decimal.		
35	I can solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5$, $4 / 5$ and those fractions with a denominator or a multiple of 10 or 25 .		
5	I can use $=<>$ to compare proper and improper fractions.		
	Measurement		
36	I can solve problems involving converting between units of time.		
37	I can convert between different units of metric measure.		
6	I can convert measurements that involve decimals and explain how.		
38	I understand and use approximate equivalences between metric units and common imperial units (e.g. cm to inches; g to pounds; ml to pints).		
39	I can measure and calculate the perimeter of compound shapes in cm and m .		
40	I can calculate and compare the area of rectangles (including squares), using standard units (cm ${ }^{2}$ and m^{3}) to estimate the area of irregular shapes.		
41	I can explain the difference between volume and capacity.		
42	I can estimate volume (for example, using $1 \mathrm{~cm}^{3}$ blocks to build cuboids or cubes) and capacity (for example using water).		
43	I can use all four operations to solve problems involving measure using decimal notation, including scaling.		
44	I can solve problems involving converting between units of time.		
7	I can order time in different units e.g. 400 minutes, 18000 seconds, $1 / 3$ of a day or 6 hour).		
	Geometry - Properties of Shapes		
45	I can use the properties of rectangles to deduce related facts and find missing lengths and angles.		
46	I can distinguish between regular and irregular polygons based on reasoning about equal sides and angles.		
47	I can identify 3D shapes, including cubes and other cuboids, from 2D representations.		
48	I know that angles are measured in degrees and can estimate and compare acute, obtuse and reflex angles.		
49	I can identify angles at a point, one whole turn (total 360\%).		
50	I can identify angles at a point on a straight line and a $1 / 2$ a turn (total 1800).		
51	I can identify other multiples of 90ㅇ.		
52	I can draw given angles and measure them in degrees.		
	Geometry - Position and Direction		
53	I can identify, describe and represent the position of a shape following a reflection, using the appropriate language, and know that the shape has not changed.		
54	I can identify, describe and represent the position of a shape following a translation, using the appropriate language, and know that the shape has not changed.		
	Statistics		
55	I can complete, read and interpret information in tables, including timetables.		
56	I can solve comparison, sum and difference problems using information presented in a line graph.		

